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I •INTRODUCTION

With the continuing advances in computing hardware and the advent of 'r p

dedicated parallel processors, it is possible to place more and more com- ,

~~puting power in small devices. This increased capability is particularly .

important for real-time image processing applications which require extre-

.mely high throughput. Examples of such application areas are robotic %

vision, medical diagnosis and military target acquisition and tracking, '

such as SDI. Current algorithms tend to be ad hoc in nature, typically

~consisting of a cascade of processors which in some cases work at cross %

purposes. For example, a 2D filter is often used to reduce noise with high

spatial frequency content. However, this operation 'Lends to blur edges

which must be detected later to determine object boundaries. A more.-'

suitable approach would be to combine edge detection and noise reduction in

Va single step, if possible. Such an approach would have the potential for

increased performance, particularly at low signal/noise ratios, where false

alarm and miss rates tend to increase rapidly in current systems.

Future image processing systems should be able to solve a variety of image -

understanding problems, such as: _

0 image segmentation

0 surface reconstruction .

• stereo matching .'

0 determining structure from motion. -¢'

: The field of computational vision is dedicated to solving these types of

' . problems and has been developing rapidly over the past fifteen years. ..
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Within the last four years, some exciting developments have occurred which "

show great promise in providing coordinated solutions to these problems .

utilizing distributed algorithms. These developments are based on uti-

lizing a probabilistic framework. The two-dimensional image is modeled as

a random field which has to be estimated in real time from a set of noisy

ambiguous measurements from multiple sensors. A Bayesian viewpoint is

adopted, in which the prior knowledge is expressed as a probability distri-

bution. Using a probabilistic description of the observation noise, the .

posterior distribution of the random field can be computed. These models

are based on the use of Markov random fields and the Gibbs distribution.

Significantly, these assumptions lead to distributed algorithms which may

be implemented on parallel processors. There are several other important

% advantages in using this approach (Morroquin, Mitter and Poggio, 1986). It "

is possible to model both piecewise continuous surfaces and the boundaries

between smooth patches (targets, clouds, objects, e.g.). It provides a

general framework for solving all of the problems mentioned above. The .' -

parameters that appear in the reconstruction algorithms have a precise sta-

tistical interpretation which may be validated on physical grounds.

1.1 Computational Vision Systems

The standard definition of computational vision is that it is inverse ,1

optics. The direct problem-the problem of classical optics-or computer

graphics-is to determine the images of three-dimensional objects. a,--

Computational vision is confronted with inverse problems of recovering sur- ,0

faces from images. Much information is lost during the imaging process
%

- %
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that projects a three-dimensional world into two-dimensional arrays 7

(images). As a consequence, vision must rely on natural constraints, that

is, general assumptions about the physical world to derive an unambiguous

output. This is typical of many inverse problems in mathematics and phy-

sics.

4The first part of vision- from images to surfaces - has been called

early vision. The common characteristics of most early vision problems, in

*-. a sense their deep structure, can be formalized: early vision problems are

ill-posed in the sense defined by Hadamard (Poggio and Torre (1984)). A

problem is well-posed when its solution (a) exists, (b) is unique and (c)

depends continuously on the initial data. Ill-posed problems fail to

satisfy one or more of these criteria.

1.2 Standard Regularization in Early Vision

The main idea for "solving" ill-posed problems is to restrict the class

of admissible solutions suitable a priori knowledge. In standard regulari-

zation methods, due mainly to Tikhonov, the regularization of the ill-posed

$. problem of finding z from the data y: Az = y requires the choice of norms

. I" Iand of a stabilizing functional IPzHJ. In standard regularization.%

theory, A is a linear operator, the norms are quadratic and P is linear. A

VJ' method that can be applied is: .1,

Find z that minimizes Az - y 2 + AiIPzIJ 2 , where A is a so-called

regularization parameter.

In this method, A controls the compromise between the degree of regu-

..

4
larization of a solution and its closeness to the data. P embeds the phy- bI

" ~-3- _ -
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sical constraints of the problem. It can be shown for quadratic .I'

variational principles that under mild conditions the solution space is -b

convex and a unique solution exists. 
%, e

Poggio et al (1984, 1985) show that several problems in early vision

can be "solved" by standard regularization techniques. Surface

reconstruction, optical flow at each point in the image, optical flow

along contours, color, stereo can be computed by using standard regulariza- S !

tion techniques. Variational principles that are not exactly quadratic but

have the same form as that above can be used for other problems in early

vision. The main results of Tikhonov can, in fact, be extended to some

cases in which the operators A and P are nonlinear, provided they satisfy 0

certain conditions. (Morozov, 1984.)

1.3 Limitations of Standard Regularization Theory B

Standard regularization theory with linear A and P is equivalent to

restricting the space of solution to generalized splines, whose order

depends on the order of the stabilizer P. This means that in some cases

the solution is too smooth, and cannot be faithful in locitions where

discontinuities are present. In optical flow, surface reconstruction and

stereo, discontinuities are in fact not only present, but also the most

critical locations for subsequent visual information processing. Standard

regularization cannot deal well with another critical problem of vision,

the problem of fusing information from different early vision modules.-.

Since the regularizing principles of the standard theory are quadratic, ...

they lead to linear Euler-Lagrange equations. The output of different

X.,'



modules can therefore be combined only in a linear way. Terzopoulous

(1984; see also Poggio et al., 1985) has shown how standard regularization

techniques can be used in the presence of discontinuities in the case of

surface interpolation. After standard regularization, locations where the

solution f originates a large error in the regularization term, are iden-

tified (this needs setting a threshold for the error in smoothness). A

second regularization step is then performed using the location of discon-

tinuities as boundary conditions.

In any case, one would like a more comprehensive and coherent theory

capable of dealing directly with the problem of discontinuities and the

problem of fusing information. So the challenge for a regularization S

theory of early vision is to extend it beyond standard regularization

methods and their most obvious non-linear versions.

0

1.4 Stochastic Approach to Regularizing Early Vision 'P

In this research, we have developed a rigorous approach to overcome part

of the ill-posedness of vision problems, based on Bayes estimation and

Markov Random Field models, that effectively deals with the problems faced

by the standard regularization approach. In this approach, the a priori

knowledge is represented in terms of an appropriate probability distribu-

tion, whereas in standard regularization a priori knowledge leads to %

restrictions on the solution space. This distribution, together with a

probabilistic description of the noise that corrupts the observations,

allows one to use Bayes theory to compute the posterior distribution Pf g,

-5-0
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which represents the likelihood of a solution f given the observations g.

In this way, we can solve the reconstruction problem by finding the esti-

mate which either maximizes this a posteriori probability distribution

(the so called Maximum a Posteriori or MAP estimate), or minimizes the

expected value (with respect to Pf (g) of an appropriate error function.

The class of solutions that can be obtained in this way is much larger than

in standard regularization.

The price to be paid for this increased flexibility is computational

complexity. New parallel architectures and possibly hybrid computers of the

digital-analog type promise however to deal effectively with the com-

putational requirements of the methods proposed here.

We wish to emphasize here that our main thrust here is in development of

distributed algorithms suitable for parallel architectures, and on compre-

hensive testing on image data.

1.5 Phase I Technical Objectives

Our research objectives were to:

0 develop new distributed algorithms for recovering structure from

motion and for discrimination of known or unknown objects from

highly cluttered background.

0 assess feasibility of real-time operation using state-of-the-art

parallel processors

. evaluate performance using highly-cluttered Image data containing

moving targets.

-6-
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2. IMAGES AS FUNCTIONS OF MARKOV RANDOM FIELDS

The key to success in the use of the proposed approach, is the ability

to find a class of stochastic models (that is, random fields) that have the -

following characteristics:

(i) The probabilistic dependencies between the elements of the field

should be local. This condition is necessary if the field is to

be used to model surfaces that are only piecewise smooth; besi-

des, if it is satisfied, the reconstruction algorithms are likely S

to be distributed, and thus, efficiently implementable in

parallel hardware.

(ii) The class should be rich enough, so that a wide variety of quali- •

tatively different behaviors can be modeled.

(iii) The relation between the parameters of the models and the charac-

teristics of the corresponding sample fields should be relatively

transparent, so that the models are easy to specify.

(iv) It should be possible to represent the prior probability distri-

bution Pf explicitly, so that Bayes theory can be applied.

(v) It should be possible to specify efficient Monte Carlo proce-

dures, both for generating sample fields from the distribution, ..
so that the capability of the model to represent our prior a

knowledge can be verified, and to compute the optimal estimators.

A class of random fields that satisfies these requirements is the class

of Markov Random Fields (MRF's) on finite lattices. A MRF has the property

that the probability distribution of the configurations of the field can

always be expressed in the form of a Gibbs distribution: S-"

-7--
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Pf(f) y exp[ - E(f)] (2.1)

To/

where Z is a normalizing constant, To is a parameter (known as the "natural -

temperature" of the field) and the "Energy function" E(f) is of the form:
.%5

E(f) = Z Vc(f)

C

where C ranges over the "cliques" associated with the neighborhood system

of the field, and the potentials Vc(f) are functions supported on them (a

clique is either a single site, or a set of sites such that any two sites

belonging to it are neighbors of each other).

We will assume that the availabl= observations g are obtained from a
o

typical realization f of the field by a degrading operation (such as

sampling) followed by corruption with i.i.d. noise (the form of whose

distribution is known), so that the conditional distribution can be written

as:

Pglf(g;f) = exp[-a E di(f,gi)J

irS

where { I} are some known functions, and a is a parameter. The posterior

distribution is obtained from Bayes rule:

Pflg(f;g) T- exp[-Ep(f;g)] (2.2)

Ep(f;g) E(f) + a E fgj) (2.3)

It is important to note that the Markov structure is retained under

conditioning and that the posterior distribution is also a Gibbs

* distribution.

-8- * ;'
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Cost Functionals i

The Bayesian approach to the solution of reconstruction problems has

been adopted by several researchers. In most cases, the criterion for

selecting the optimal estimate has been the maximization of the posterior ?.

probability (the Maximum aposteriori or MAP estimate). It has been used,

for example, by Geman and Geman (1984) for the restoration of piecewise

constant images; by Grenander (1984) for pattern recognition, and by Elliot

et. al. (1983) and Hansen and Elliot (1982) for the segmentation of tex-",
II

tured images (a similar criterion - the maximization of a suitably defined ".

likelihood function - has been used by Cohen and Cooper (1984) for the same .

purposes).

In some other cases, a performance criterion, such as them"ininization ...

of the mean squared error has been implicitly used for the estimation of ..

particular classes of fields. For example, for continuous-valued fields

with exponential autocorrelation functions, corrupted by additive white . -

Gaussian noise, Nahi and Assefi (1972) and Habibi (1972) have used causal '

linear models and optimal (Kalman) linear filters for solving the

reconstruction problem..

"" ~Although other criteria are possible (cf Morroquin, 1985), we have..."

chosen the MAP criterion here for designing optimal estimators since ths

criterion gives generally equivalent results, with the exception of very ;

high noise situations. The performance of estimators using other criteria

. .M

beed n aedbyoevraletpcf aeI researcher.. otcss th"citrin o
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3. ESTIMATING STRUCTURE FROM MOTION

Since the primary goal of image processing will be target detection,

discrimination and monitoring, we can exploit the fact that the target

image will be moving relative to most of the rest of the image.

A common approach to the problem is the use of flow fields (for

example, Ullman, 1981; Bruss and Horn, 1981; Williams, 1981, Hildreth,

1984; Adiv, 1984). These approaches generally assume deterministic models

or utilize standard regularization techniques. We have already alluded to

several problems encountered when using these approaches and the potential

advantages of a statistically-based approach based on local interaction

models.

Reed, et al (1983) have developed a three-dimensional matched filtering

approach to moving target detection. However, it is limited to point "

targets. Legters and Young (1982) developed an operator-based approach r%

using foreground and background models and solved a least-squares minimiza-

tion problem. No statistical object model was used. Miller, et al (1985)

have studied the general moving target detection problem, restricted to

point targets, and concluded that the uniformly most powerful detector,

invariant with respect to image intensity variations, consists of specific

spatial-temporal differencing schemes. In the sequal, we derive similar

conclusions for a much more general object model.

We suggest that the MRF methodology may be employed to recover object 0

motion from successive images. The key to the approach lies in

appropriately defining the potential function.

-10-
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3. 1 Optical Flow

Let vx(X,y), vy(x,y) be the components of the velocity vector at the!! -b

point (x,y) on the image. Then vx and Vy can be estimated by using a flow

equation

M(xyt) af(x,y) + vy af(x,y) + af(x,y) =0

where af(x,y)/3x and 3f(x,y)/3y are spatial gradients of the image inten- 5 -

sity at (x,y) and 3f(x,y)/3t is found by time differencing successive ima-

ges. All terms are readily estimated by using numerical differencing %.

methods. The solution to this equation is a locus of points along a

straight line. By evaluating solutions around a neighborhood of (x,y), one .

can determine estimates for vx(x,y) and vy(x,y) by the intersection of the

individual solutions over pixels within a neighborhood.

Flow field methods may not be optimal for the SDI problem, however. r

The critical aspect of the tracking problem we are addressing is the abi-

lity to handle cluttered background and foreground noise at very low

signal/noise ratios. Methods to date are generally based on moving target

indicator (MTI) technology and use flow field analysis. These methods 1

assume smoothness properties which do not hold for objects covering only a
S

few pixels, when only a few grey levels are used, or for the case when

object velocities are on the order of one pixel/sample, which is likely to

occur in an SDI enviorment. Differencing operations are required which can

lead to large errors in high noise conditions. In these cases, detection

and tracking accuracy will be degraded by the effects of incorrect assump-

tions in the problem formulation.

0

-11-



The approach we are studying avoids these problems by analyzing the VP

011 image on a pixel-by-pixel basis, with no impicit smoothness assumptions. I.,

Smoothness may be employed explictly as required, for example to develop a -

local Markov random field model.

3.2 Batch Processing Formulation

We are interested in recovering the intensity field of an object moving
I,,

in a highly cluttered environment. The object is modeled using a Gibbs

distribution of the form

II

Pf = - exp[-Vc(f)/T] (3.1)Z9

where z is a normalizing constant, f is the object intensity field, T is

the "temperature", and Vc(f) is an appropriately chosen potential function.

We have experimented with several different potential functions, including

the Ising model, with the result that the following function
'-V

Vc(f)= fi - fjI (3.2)
Nj

where Ni is the neighborhood of the ith pixel and fi is the intensity of

th
the i-= pixel, works reasonably well. In our research we have used a 4 -

connected neighborhood consisting of the 4 adjacent pixels. The probabi-

lity density Pf describes the apriori information.

In order to process cluttered images we need a stochastic image model S

which accounts for object motion, background clutter, and image noise. We

have used the following model for the observed image g at time step k:

V

-12-
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gj(k) = bi[l-s(fik)I + fik + nj(k) (3.3)

where bi is the (fixed) background, ik indexes the pixels according to the

velocity of the object, and s(.) is a function which is one if the object

covers pixel ik at time step k and is zero otherwise. For a two-

p dimensional field indexed by p,q:

Pk p k vx

qk= q -k vy

where vx, vy are orthogonal velocity components. Note that we make no

smoothness assumptions such as is done in visual flow field analysis. This

allows us to analyze images with only a relatively few number of pixels.

The noise nj(k) consists of two processes

ni(k) = noi + nki (3.4) "**

where noi is a time-invariant noise present at all time steps and nki is a -

time-varying noise. Both processes are assumed to be exponentially distri-

buted with known mean and variances and are mutually independent. By

assuming zero-mean Gaussian distributions, the problem becomes one of mini-

mizing the following energy function with respect to b and f:

E(f,g) = Vc(f) / T

. gi(k) -b i [ -s f ) -f k  (3-5)

+N ['sf) - bi
i k

where N is the sum of the variances of the two noise processes.

The minimization was carried out as follows: .

-13-
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(i) An estimate of b i was calculated as bi = b with b the mean image

intensity over the entire image field.

(ii) Select a pixel i at random.

(iii) Select a new estimate fi * fi from the set of allowable intensities

using a uniformly distributed random variable.

(iv) Compute the resulting change in energy AE.

(v) If AE 4 0, accept the change, i.e., set fi = fi. . 4hA

(iv) If &E > 0, accept the change if exp (-&E) ) r, where r is a uni- •

formly distributed random variable between 0 and 1; otherwise, :A4%M

leave fi unchanged.

(iiv) Repeat steps (ii) - (vi).

Steps (ii) - (vi) comprise the Metropolis algorithm (Metropolis, et al

1953), which generates a regular, reversible Markov chain. The resulting

image configurations are distributed according to the Gibbs distribution

•., .:,..:

. exp [- E(f, g)] 0
z

06,.

Minimization with respect to velocity was performed by an exhaustive

search over all possible velocities, using a course quantization. Note

that this minimization can be done using completely independent processors. -

-.4

9.4-
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We have conducted experiments on several different cases, wth pro--

mising results. An example is shown in Figure (3.1), where a square 4x4
%P

object is moving at the rate of one pixel/sample to the right over a clut-

tered 10x14 background and is viewed in noise. The object has intensity of

2 over a background whose mean intensity is I with an rms value of 0.5.

e. The additive noise has an rms value of 0.5 and T = 1. Four intensity

levels (0,1,2,3) are plotted. Figure (3.1) shows the actual object, actual

background (panel b) and 4 successive cluttered images of the moving object

(panels c-f). The object has essentially disappeared in the noise.

Recovery is shown in panels g-k: the object is fully recovered using only

16 iterations/pixel (we are assumung parallel implementation). The error

shown is ( (fi - fi) 2 while the energy shown is E for a temperature of I.

The initial energy (using as b the mean pixel intensity) was 601.017. The 4.

minimum energy solution clearly recovers the original object. Note that

this case corresponds to recovering the object in the time required for it

to move by one length.

The previous tests used the Metropolis algorithm to detect moving

objects. We have found that the algorithms may be simplified considerably

without any significant loss of accuracy by simplifying the iterations. a

The simplification is to only accept changes which lead to a reduction in

the energy fuction.

An example of our results is given in Figures 3.2 - 3.6. In Figure

3.2, a series of six noise-free images are shown in which a 3x3 object of

;. ,-.;.'
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Figure 3.1 (cont'd) Detection of Moving Object in Cluttered Background and Noise
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intensity 2 moves over a 13x19 background of intensity 1 with velocity v = -
% e

(1,) pixel/sample. The object in its original position over a background

of intensity 0 is shown in Figure 3.3. In Figure 3.3, a cluttered

background is shown which was generated using Gaussian random noise with

rms value of 0.8. The intensities are quantized in the figure to four

values (0,1,2,3). Noisy images were then generated by adding time-

invariant noise (rms = 0.8) and time-varying noise (rms = 0.4) to the image

comprised of the object over the cluttered background. The resulting Ima- -

ges are shown in Figure 3.4; the object has essentially disappeared in the

noise. These six images were used in the detection algorithm to search for

the presence of a moving object. The results are shown in Figure 3.5 and

3.6. In Figure 3.5, the estimated velocity matches the actual velocity and

%the object is recovered, with only small error and is in the correct posi-

tion. Three cases are shown for n=1, 6, 11 where n is the number of global

iterations (a global iteration is comprised of one iteration per pixel over

the entire image). %

In Figure 3.6, the results for the case of a velocity mismatch
for.

= (1,0)) are shown: two long slender objects are detected which are %

,- aligned along the estimated velocity direction and are in the wrong posi-

tion. However, the energy is higher than for the case of a velocity match,

indicating that there is a velocity error. Thus, the minimum energy solu- %,

S.-' tion yields the correct velocity, as desired. The error values shown in

the figures are the true (unobservable) fit error measured in terms of the

pixel-by-pixel difference between the object estimate and the true object.

-22-
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3.3 Recursive Problem Formulation

During the course of our research we developed a new problem for-

mulation which yields improved results over the previous batch processing

approach. It is based on a recursive Bayes formulation to compute the

*. object conditional density, based on the observed images to date.

In our work we have used the following model:

S 4k(f) B(i) [l-S(T(ik) ] + 'F(ik) + nk(i) + n0(i) (3.6)

k = 1,2. ......
i = 1,2,....

where

%k(i) = observation intensity at pixel i and time k '-

V,
+(ik) = object intensity at pixel ik and time k. The index ik depends 'a

upon the motion of the object. Throughout we will set i1  = i.

B(i) = background intensity at pixel i

n0 (i) = time-invariant foreground noise

nk(i) = time-varying foreground noise

= 0 ; T(ik) = 0S( (ik)) = ,(3.7) '

1; otherwise

Note that B(i) is time-invariant. Also, without loss of generality we

take nt(i) = 0. We will assume that nk(i) and nn(i) are mutually indepen-

dent gaussian zero mean processes, uncorrelated over both space and time,
%".

with

"pp
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-4 ..-

E [nk(i) 2 ] - N1 for all k

E [no(i) 2 ] - No b

Let T- {T(i)}

(b k = {IDk( i) }:.

Bk = (B(i)}

Then we are interested in the probability -..

By Bayes' Rule we get the recursion ",

• " P( /, B ( ¢I, "' D ) P((D'nl T, B, I I , n-l) P( 1, B I • •@ - ).,'

"Bn P( n 'I"• n-l) .1,,

Z.?.

By aestar Rui we e the reti l c ursiions us n sap i r r ba i iy"

PO(T, B) =exp - I U2(B )

where UI(. ) and U2(.) are appropriate energy functions. For example, we .

can utilize Ising potentials. These potentials are completely arbitrary'

and yield a Gibbs distribution. -

PO(T, B) = exp - UO( , B)]

zo

T h e n upTlt

-4
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P(01I T', B) Po(0 , B)
P(r, B A _ _) z P(01 )

The denominator is independent of T and B. Thus, if we want a point

estimate (Maximum Aposteriori e.g.) we need only evaluate the numerator.

We will assume we are looking for a MAP estimator here. Neglecting terms

independent of T and B we get a simplified form.

4*0 Now

f(i) = B(i) [1-S('(i)] + T(i) + n0 (i)

Recall that there is no time-varying noise component here.

We now introduce our motion model. We asaimre that the object we are

a,. interested in tracking is associated with T in the following way:
*,,.1

(a) if '(ik) > 0, then the object is within pixel ik at time k S

We(b) if T(ik)= 0, then the object is not within pixel ik at time k

'.

We further require that '(ik) > 0 for all i,k. p-

We assume here constant rectilinear motion, which is consistent with

the space-based target tracking problem over a short time period. Over a

longer time period, the tracking algorithm can be used on successive data

windows to achieve accurate tracking for non-rectilinear motion. Thus we

can write, in two dimensions

'(ik, Jk) = (i-k vx, j-k vy)

• .%

where v,, vy are the velocity components. This is the discrete form of the

optical flow equation. Returning to our development we find that the con-

-- 25-



ditional density for the first image is

P(l , B) = Pnp { 1 (i) - B(i) f1-S(T'(i)] -
ihPno

where Pno is the probability density of no. Combining these results, we

u find that the aposteriori density given the first image may be written as a

Gibbs distribution

p -

P('F, Bji)=L exp {-EI('Y, B, '0}* Zi

where

EI('O, B, 0i) = ) {e1l(i) - B(i) (-S(TO(il))] -VO(il)}
2No i

+ Uo(Q, B)

We now go to the next time step. The second image is modeled as

•€2(i) = B(i) [I-S(To(i 2 )] + T 0(12 ) + n0(i) + n2 (i)

By subtracting 0 1(i) we get

2(i) -'(i) = B(i) [-S(To(i 2 )) + S(TO(il))]

.-' + 'F0(i2 ) - 'O(il) + n2 (1)

Now

(D2 P ((D2 Y?, B, 11) P( , B i )

. -P(Y B I ¢ , 2) = P(2 l)

" "and

.- .26
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,. "..'V2 B, =

H" P ( 2 ( ) - 'l(i) + B(M) [S( (i2 )) - S( M(i))] + (i) - ( 2) 1

i 2

where Pn (.) is the probability density of n2.Pn2

'.

Thus

a,

P(f, B 1 2) = exp {- E(O, B, ,2
an 'z 2

where

- E('O, B, 01, '2) = O (0, B)

+ 
2

+ 1 2 {O(I ) - Bi) [1-S('T(i)] - (i)}" " '-"2No i

2N1  2a.+ -2N - i [D2(i) - i ( i )  +  B(i) [S(T(i2)) - S(T(i))] + T(t) - (i2)}

We can see immediately by induction that

,a.

P(', B n1, °  
'n) = 1 exp {- E(', B I, . n)}

where

E(QO, B, 'P, .... n) = UO(i', B)

2

2 2No i

-a

+ (Pk(i) - 'I(D ) + B(i)(S({(ik)) - S(M(i))] + T(i) -(ik)}

2NI k i (3.8)

° ' This expression is to be minimized with respect to Tn, B, vx and v..

Note that E is nonlinear in T.

-. ,
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Minimization can be done for example using gradient approximations or
stochastic approximations or simulated annealing. In our work to date we

have used the randomized descent method described in Section 3.3, which is

V highly parallelizable.

* If we have no prior information on B, then U (TO, B) = UO (Tn).

However, if we assume, say, that object is generally brighter that

background we can construct an appropriate potential function. Here, we
-...

have assumed no prior information on B. I

Experimental Results

We present results on the same case as presented in Figures 3.2 - 3.6, 1.
,., in which there was some error in recovering the object. Figure 3.7 shows
'-I .5.

the object at its original position (k = 1) which is moving with velocity

v = (1,1) pixel/sample. Also shown is the background which had mean one

and rms 0.8 (gaussian). Figure 3.8 shows successive cluttered images in

which the object is moving over the cluttered background in additive noise

(N0  = 0.64, N I = 0.16). Figure 3.9 shows the object recovery for three .

different values of estimated velocity after n global iteratios. When the

velocity matches (panel (a)), the glohal minimum energy is achieved and the

object is recovered exactly. This is an improvement in performance over

the results presented in Figure 3.5. Note that no more than 11 global

iterations are required for recovery. The indicated error is the true sum-

squared pixel error.

Since recovery was perfect for this case, we increased the noise to

OB = 1.0, No  1, N1  0.25, a decrease of 36Z in signal/noise ratio for

, .
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each noise source. The cluttered images are shown in Figure 3.1n and object

recovery is shown in Figure 3.11. One object pixel is in error and there
ib

are three pixel artifacts.

3.4 Parallel Implementations

The randomized (Monte Carlo) procedure we have used for finding MAP
J J%

solutions to the Bayesian estimation problem can be accelerated signifi-
.'

cantly by using a parallel architecture for implementation. If a processor

is assigned to each pixel, for example, then the processing time will be

reduced by a factor of n/k, where n is the total number of pixels and k is

the chromatic number of the lattice. The chromatic number is equal to the

minimum number of colors needed to color the sites of the lattice in such a

way that no two neighbors have the same color. As an exawple, in our

4-connected neighborhood used for experimentation the chromatic number is

2.

To be more specific, consider solving for the MAP estimate by mini-

mizing (3.8) using a massively parallel architecture such as the Connection

Machine (Hillis, 1985), which is a Single Instruction Multiple Data (SIMD)

array processor consisting of 256,000 processing units. Each unit has a

single-bit arithmetic/logical unit and about 4k bits of storage and is S

organized in a 4-connected lattice that is 512 elements square. At each

cycle of the machine, which we assume here to have a duration of one micro-

second, an instruction is executed by each processor and a single bit is •

transmitted to its neighbors. This means that the first-order Markov field

we have assumed here can be efficiently implemented.

W
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We assume that 16 cycles of a single-bit processor are required to per-

form a single 16-bit addition, subtraction or comparison; 256 cycles are

required to perform multiplication or division: 512 cycles are required to

generate a uniformly-distributed random variable; an-I 16 cycles are needed

for memory transfer. We also assume a chromatic number of two, an overhead

factor of two, 20 global iterations,and six sequential images to be ana-

lyzed. The resulting cycle count for a solution is 1,699,840 which yields

a solution time of about 1.7 seconds. Note that for n pixels the number of
S

processors required is 2 n v where v is the number of possible velocity

combinations to be checked. -' -
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4. SUMMARY AND CONCLUSIONS

This research has been focused on the moving target detection and

tracking problem using image analysis techniques. We were particularly

interested in a severely cluttered environment in which high degrees of

pbackground and foreground noise were present. A probabilistic approach has

been developed using an integrated Bayesian approach. Prior knowledge is

employed using a Markov random field model in the form of a Gibbs distribu-

tion. Using probabilistic noise models, the aposteriori distribution is

also Gibbs. No knowledge of the target is presumed, other than a local

statistical model involving an arbitrarily-constructed potential function

which then specifies the prior distribution.

The framework we use has been developed recently by several researchers

and has yielded promising results for image segmentation, boundary detec-

tion and clutter rejection. In this research we have, so far as we know,

extended the framework to include motion analysis for the first time. We

develop both a batch processor and a recursive processor; the recursive-b

processor yields superior results since the posterior conditional distribu-

tion is theoretically known exactly. The batch processor, on the other

hand, is a smoother, and yields ordinary least-squares solutions.

We have developed parallelizable algorithms for computing the maximum

aposteriori estimate of the image field containing the target. These

algorithms are of the Monte Carlo type and are closely related to the

Metropolis algorithm. Numerical results are presented to demonstrate the

potential of this approach in solving very difficult target tracking

-36-.
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problems in an extremely noisy environment. We speculate that the results

are close to the optimum in terms of accuracy in recovery of the unknown

.* moving target.

" .Parallel implementation is discussed and an example given to demonstrate

feasible solution times on current array processing hardware.

One of the most critical aspects of the problem is how to choose the

svstem parameters to optimize performance. This is of particular impor-

tance when autonomous operation is required, as in SDI. Nonlinear opti-

mization is required, once the interaction effects between algorithm

parameters and measurable image parameters (such as statistical variation,

correlation, etc) is worked out. This problem is virtually untouched in

the literature and would be a suitable topic for Phase II research.
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